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The work presented here is the first part of a continuing effort to expanding existing
capabilities in aeroelasticity by developing the methodology which is necessary to utilize
unsteady time-domain aerodynamics directly in aeroservoelastic design and analysis.

The ultimate objective of this study is to define a fully integrated state-space model
of an aeroelastic vehicle's aerodynamics, structure and controls which may be used to
efficiently determine the vehicle's aeroservoelastic stability.

In this presentation, the current status of developing a state-space model for linear
or near-linear time-domain indicial aerodynamic forces is presented.

MOTIVATION:
TO EXPAND EXISTING AEROSERVOELASTIC DESIGN AND
ANALYSIS CAPABILITIES TO INCLUDE THE USE OF
UNSTEADY TIME-DOMAIN AERODYNAMICS

LONG-TERM OBJECTIVE:
DEVELOP METHODOLOGY TO UTILIZE LINEAR AND NEAR-
LINEAR TIME-DOMAIN AERODYNAMICS IN THE SUPERSONIC
AND SUBSONIC REGIMES DIRECTLY IN AEROSERVOELASTIC
DESIGN AND ANALYSIS.

IMMEDIATE OBJECTIVE:

DEVELOP A TIME-DOMAIN STATE-SPACE MODEL OF TIME-
DOMAIN AERODYNAMIC INDICIAL FORCES.
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THE INTEGRATED AEROELASTIC MODEL

To understand the importance of this research, it is necessary to consider that
several codes [1,2] have been developed in recent years which compute time-domain
unsteady aerodynamics, however, the techniques needed to utilize the aerodynamics in
aeroservoelastic design have not been fully developed.

One of the only methods devised to date to evaluate the aeroelastic stability of
aerospace vehicles in the time-domain has been a general method capable of handling the
nonlinear system [3]. This method is expensive as it involves the computation of the
aeroelastic system time response which requires solution of the nonlinear small disturbance
aerodynamic equations. Further, a frequency decomposition of the response is necessary
to evaluate the stability of component modes. The response must be recomputed at several
dynamic pressures until a neutrally stable mode is encountered. Other available methods
model the aerodynamics directly in the frequency domain.

For linear and near linear systems in supersonic and subsonic flow, however, the
vehicle stability may be evaluated without computing the aeroelastic system forced response
or transforming forces to the frequency domain. This is accomplished by representing the
time-dependent aerodynamic forces in state-space form coupled with a commonly used
state-space representation of the structure. Stability is determined by the eigenvalues of the
coupled system matrix.

The focus of this presentation is, again, on the formulation of the aerodynamic

portion of the integrated model.

Structural Model
{x}=A’{x}+B’{u}

{n}=C’{x} +D’{u}

nn

Aerodynamic Model
{w}=A{w}+B{n}
{u} =C{w}+D{n}

Figure 1. Schematic block diagram indicating integration of the aerodynamic
model with the structural model.
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FORMULATION OF AERODYNAMIC MODEL

The aerodynamic model is derived as the Laplace transform of a commonly used
frequency domain approximation modified from ref. 4. It is transformed directly into state-
space form.

MODIFIED FREQUENCY DOMAIN APPROXIMATION

— N B _
Q(s)= A0+A1Es+2—'s— n(s) q
V i=1 S+Bi!
b
STATE-SPACE REPRESENTATION IN TIME DOMAIN
- v .
W, ) 315 0o .- 0 ‘w,] [0 B,
A 0 B
Melofo g, ¥ o W2l .2{‘.‘}
: b : s n
Wn) o By~ |(wn) [0 By
| b |
W, )
— _ w, | _ b1(n
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APPROXIMATION METHOD

The approximation method involves a least squares approximation to the actual
aerodynamic force to determine the scalars A, A; and B;. The fit is constrained at t=0to

fit exactly and at large times to equal the asymptotic value of the generalized force. Asin
the frequency-domain rational function type approximations, acrodynamic poles, ﬁi , are
initially specified.

The aerodynamic forces currently being approximated are the rigid-body forces
acting on a NACAQ064 airfoil and are due to Dowell [5].

APPROXIMATING FUNCTION
Vv
_ i b. N Bi—t |
G(1)=| Aon(t) + A1 g A(1)+ XBie ® g
1=

CONSTRAINTS ON LEAST SQUARES APPROXIMATION

A, :Q(tw)
A =(Q(0) —igBi —Q(,tw)]%
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APPROXIMATION METHOD (CONTT)

A system identification technique frequently used in control system analysis is
applied to regenerate the generalized aerodynamic force. Specifically, impulse and step
responses of the aerodynamic model are generated using a discrete-time state-transition
method. The sum of these responses is the aerodynamic approximation, Q(t)=Q(t), based
on previously determined coefficients and the specified aerodynamic poles.

Due to the discontinuity at t=0 in the impulse input, an assumption is made that at
t=0+, initial conditions are real valued. At t=0-, initial conditions are zero. This

assumption can be shown mathematically.

STATE TRANSITION EQUATIONS
w(t+1)=dw(t)+Tu(t)

Q(t) =Cw(t) +Du(t)

WHERE
o(t)=elAlT ¢ T=[JelA"Bdr

ASSUMING

w(0™)=0 w(0* ) =Bu(0)
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APPROXIMATION METHOD (CONTI)

Improvements to the aerodynamic approximation are made by updating the
aerodynamic poles, B;, followed by another least squares approximation to recompute the
coefficients. To update the poles, the method used by Peterson and Crawley [7] to
approximate unsteady aerodynamics in the frequency domain is implemented in the time
domain. A norm square-error cost function is defined. In this case, the square of the
difference between the actual aerodynamic force and the approximation is used.. The
incremental change in aerodynamic poles is solved for by inverting the Hessian,

921/ dB;0Py., in a single term Taylor series expansion of dJ / dB. The incremental change
in B is multiplied by a scale factor, o, and added to the current acrodynamic poles. The
scale factor, o, is computed using quadratic interpolation [8] to insure that the cost is
approaching a local extrema.

The new aerodynamic poles are limited. If a given pole is greater than -0.01, it is
set equal to that value until the next parameter update. To prevent a pole from going to —oo
and ill-conditioning the system matrix later on, the pole is limited to a value which would
produce no more than a 99.5% decrease in magnitude of the exponential over a given time
step.

The two step procedure of computing system coefficients and updating
aerodynamic states is repeated until the cost function has been minimized.

SQUARE ERROR COST FUNCTION

J(B)=[Q(t)-Q(t,B)]"[Q(t)-Q(1,B)]

NEWTON RAPHSON STEP
(8B, }=[H]" {ﬂ}

9%
aB;9Py

WHERE,
H

AERODYNAMIC POLE UPDATE

Bnew =Bo +a 0B;
CONSTRAINTS ON AERODYNAMIC POLES

p<-0.01 AND B>In(0.005)/At
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PRELIMINARY RESULTS

Table I briefly describes some of the progress which has been made up to this time.
Four sets of initially specified aerodynamic poles, associated coefficients and the initial cost
are indicated as well as the minimum cost quantities. The first set of poles is a subset of the
poles which were used by Dowell to generate the aerodynamic forces. Dowell's zero pole
was not included for stability reasons and because the A1 term serves the same purpose of
providing a constant term at t=0. The other sets of poles represent "random" selections
between a small negative number and -1.0, -2.0 and -3.0.

A minimum cost was obtained for each of these sets of poles. The poles close to
those of the generating function produced the lowest cost. Minimum cost increases from
there as the range of initial poles widens. It is noted that finding a minimum isn't always
guaranteed. For some sets of initial poles, the least-squares fit doesn't converge or the
program determines a local maxima instead of a local minima.

One of the immediate observations which can be made from Table I is that the
aerodynamic poles tend to decrease in magnitude as the cost is minimized. The same trend
occurs as other rigid body forces are being approximated. The implication is that the fit
improves at large times and degrades at small times. In terms of reduced frequencies, this
means that the high frequency components of the curve are not being fit well. Thus, a
weighted least-squares fit and a weighted square error function will be considered to
improve the approximation at small times.

Finally, an assumption made in the quadratic interpolation subroutine which
computes parameter step size is that when the square-error cost is computed for the "step-
ahead" coefficients remain constant . From Table 1, this appears to be a valid assumption,
as over the entire range of parameter updates, coefficients have remained fairly unchanged.



PRELIMINARY RESULTS

LIFT DUE TO PLUNGE
6 POLE APPROXIMATIONS

Initial Data Minimum Cost Results

Poles™ Coefficients Ao At Cost  Poles™ Coefficients Ao A1 Cost
-0.1 -0.433 0999 0.034 0.0170 -0.091 -1.24 0999 -0.036 0.0012
-0.3 -0.51 -0.081 0.805

-0.8 1.646 -0.148  -0.178

-1.2 -2.841 -0.520 -0.116

-1.75 2.19 -1.255 0.402

-3.5 -0.574 -2.082  -0.123

-0.2 -3.041 0999 -0.074 0.0047 -0.185 -3.202 0.999 -0.056 0.0020
-0.4 43.06 -0.33 42.016

-0.5 -124.97 -0.401 -114.617

-0.6 121.388 -0.470 103.931

-0.8 -51.012 -0.613 -37.816

-1.0 14.162 -0.775 9.256

-0.334 -6.036 0.999 -0.343 0.1995 -0.243  -5.681 0.999 -0.0997 0.0166
-0.668 46.844 -0.424  42.426

-1.0 -178.225 -0.590 -152.419

-1.334 333,826 -0.747  263.921

-1.668  -299.231 -0.898 -215.887

-2.0 102.678 -1.049  67.253

-0.5 -9.818 0999 -1.266 0.8607 -0.35 -6.406 0999 -0421 0.2469
-1.0 89.054 -0.683  42.793

-1.5 -365.568 -1.03  -137.988

-2.0 723.748 -1.409 222239

2.5 -678.553 -1.837 -174.33

-3.0 241.917 -2.343  53.628

* Poles indicated are B'Tt; :

Table I. Summary of some aerodynamic poles, coefficients and cost functions .
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PRELIMINARY RESULTS (CONTTI)

Figure 2 illustrates some of the approximations to the rigid-body forces acting on a
NACAO0064 airfoil which are currently being obtained. The figure includes a pair of
figures for each of four rigid-body aerodynamic forces. The lower figure in each pair
contains a comparison between the acrodynamic data and an approximation made by using
the initially specified aerodynamic poles. The norm square-error cost is indicated. The
upper figure in each pair indicates the improved approximation after the minimization
technique has been applied. Again, the minimum norm square-error cost is indicated. In
all cases, aerodynamic data has been normalized with the largest absolute magnitude of
force.

As can be seen, the technique does improve the approximation noticeably. In three
of the four cases, the cost has been reduced by about 90%. In the case of "Moment Due to
Pitch", the cost was observed to remain high even after minimization. This emphasizes the
fact that the current method finds only the first extrema in cost. This extrema may be only a
local extrema and not a global one.
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PRELIMINARY RESULTS
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Figure 2. Approximations to NACAQ0064 airfoil rigid body forces using initial aerodynamic
poles and aerodynamic poles computed for minimum cost.
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FURTHER DEVELOPMENT

Other methods will be considered to determine minimum cost. The method
currently used is effective, but needs modification.

In an effort to improve the fit for small times, a weighted least squares fit will be
implemented to determine the coefficients. A weighted square error cost function will also
be considered.

Sometimes the program converges to a local maximum instead of minimum. Thus,

means of forcing the program to converge on a minimum will be implemented.

FURTHER DEVELOPMENT

e IMPROVE PROCEDURE TO IDENTIFY MINIMUM COST

e INVESTIGATE WEIGHTED LEAST SQUARES APPROXIMATION TO
DETERMINE COEFFICIENTS

INVESTIGATE A WEIGHTED SQUARE ERROR COST FUNCTION

INVESTIGATE METHODS OF CHANGING THE SEARCH DIRECTION IF A
MAXIMUM IS BEING APPROACHED INSTEAD OF A MINIMUM



FURTHER APPLICATIONS

To further evaluate this technique, acrodynamic data generated for a real aircraft by
a time-domain aerodynamic code in the subsonic and supersonic flight regimes will be
modeled. Both rigid-body and flexible modes will be considered.

Finally, to fulfill the whole purpose of developing this model, methodology will
need to be developed to integrate the aerodynamic model effectively with a structural
model. Later, control systems will be integrated into the scheme. Using the integrated

models, system stability will be evaluated.

FURTHER APPLICATIONS

e APPLY TECHNIQUE TO FLEXIBLE AND RIGID BODY GENERALIZED
AERODYNAMIC FORCES ACTING ON A REAL AIRCRAFT

e DEVELOP METHODOLOGY FOR INTEGRATING MODEL WITH DISCRETE-

TIME STRUCTURAL MODEL AND PERFORMING STABILITY ANALYSIS FOR
ARBITRARY MOTION
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